



# AIRS In-flight Spectral Calibration Steve Gaiser



#### Introduction



### Spectral calibration is important

- It's a basic need of any spectrometer.
- It is used explicitly by the AIRS forward models.
- 1% □□ centroid errors (a 1 □m focal plane position error) can cause radiometric errors of up to 0.4K.

## Approach summary

- Simulated radiances were created at multiple frequency sets (each corresponding to a different shift of the focal plane), oversampling the AIRS detectors' spacing.
- Observed radiances are averaged, and narrow spectral bands (called "features") are correlated against the different simulated radiance sets. A best fit shift is determined for each feature.
- Individual feature shifts are combined to determine the best fit focal plane position.



# **Results Summary**





- Used Fishbein simulation of Dec. 14, 2000 (240 granules)
- No failures
- Mean = -0.22 microns
- Stddev = 0.25 microns
- Requirements satisfied



## **TGRS Paper Cross-references**



#### Strow et al.

- Frequency errors are channel dependent.
- The nominal AIRS spectrometer model is within 0.0005 \* □□ of the true frequencies for all channels.
- Uncertainties in the array positions are the biggest source of error in the AIRS spectrometer model.
- Uncertainty in the SRF shapes (including fringes and other effects) introduces an error in reference radiance spectra equivalent to a centroid error of less than 0.0002 \* □□.

#### McMillin et al.

 Spectral stability for periods of the order a month are required for tuning.

#### Fishbein et al.

 Simulation based in part on NCEP forecasts for that day. (ref dropped; oops!)



## **Periodicity Analysis**



#### Periodicity of one day's shifts



- Individual features show power at orbital, semi-orbital, and quarter-orbital periods.
- Semi-orbital variations usually dominate.
- 0.30 micron peak-to-peak variation is best fit to dominant period for this day



#### **Conclusions**



- Based on simulation results, the current algorithm satisfies requirements.
- Additional improvements are possible if [when] real data prove more difficult:
  - Include multiple climatologies (reference spectra for multiple atmospheric profiles).
  - Weigh features according to the number of footprints averaged